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ABSTRACT 

For the case of the 3! multiplications of the matrices M,, My, 
M =  expressing the proper rotations of a three-dimensional ortho­
gonal frame, two special propositions a re  demonstrated. One 
is that the trace functions $-- {M, MY MI, MY M Z M, ,Mz M, MY} and 3,- {M. M=M~ , M~ M, M ~ ,M =M~ M,} are each invariant with respect to 
the choice of a right or left handed coordinate system. The other 
proposition is that changes in sense of an odd number of rotation 
angles about the coordinate axes cause the trace function $- to 
map onto the trace function 3 ,  o r  vice versa. 

Also, three-dimensional eigendyadics corresponding to ele­
ments of the symmetric group A 3  fro,m specified elements of the 
group O +  (3), and the independence of the choice of an eigendyadic 
from the order arrangement of the dyadic components is 
demonstrated. 

Thus, the initial choice of spatial orientation of the three-
dimensional eigenbasis is immaterial; but once it is made the re­
maining possible five orientations resulting from the permuta­
tional arrangements of the components with respect to the basis 
elements are uniquely determined. 
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CONCERNING THE PROPER ROTATIONS OF A 
3-DIMENSIONAL ORTHOGONAL FRAME 

by 

Albert G. Gluckman 


Goddard Space Flight Center 

I NTRODUCTlON 

This treatise was conceived with a view toward various problems of spatial orien­
tation in classical mechanics, optics, and electromagnetic field theory. It is a kinematical study 
of proper rotations occurring in three-dimensional space. A result is obtained in which the ele­
ments of the symmetric group on three letters a r e  related to eigendyadics. These eigendyadics 
have as their components eigenvalues which a r e  derived from the 3!  different rotation operators 
considered. 

The ensuing discussion is a study of the six different elements of the group of proper rotations, 
the proper orthogonal group 0' (3) (or as it is otherwise called, the special orthogonal group SO (3)), 
which are formed as products of the three elements Mx,My, and MI, expressing rotation about the 
three coordinate axes of the orthogonal frame ,3. These 3!  products a re  formed by permuting the 
order of the multiplication of Mx, M ~ ,and M T. The rotation angles shall be so chosen that no one of 
the unimodular factors Mx, My, and/or M z  is an identity element: thus B i  # k2kv where i = 1, 2, 
o r  3 and k = 0 o r  a positive integer; for in that case, the system reduces to one involving only two 
proper rotation matrices. Such a case would then be a constraint placed upon the system as orig­
inally conceived, which would affect the generality of the conclusions. The angles e , ,  e,, and 8, 
of rotation about the X, y ,and z axes, a re  elements of the field R #  of real  numbers. ,?J itself is 
embedded in a three-dimensional continuum which, though it could be globally Euclidean, is at the 
least locally Euclidean. 

The explicit representations of the three proper rotation matrices are: 

- -- -

1 0 0 cos 8, 0 s i n e ,  C O S  8, - s i n  8, 0 

M x  = 0 cos 8, - s i n  8, 3 MY = 0 1 0 C O S  8, 0 

0 s i n e ,  COS 8,- 8, 0 C O S  8, 0 0 1- - ­
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These unimodular matrices may of course, be multiplied together in six different order arrange­
ments to form six different products. 

After computation of the corresponding traces of the matrix group elements, it is found that 

cos e, cos e, t cos e, cos  e, .I c is  e, cos e, - sin e, sin e, sin e, 

= 3- = t r  (M, M Y  M , )  = t r  (MY M Z  M , )  = t r  (M, M,  My); 

and 

= $I+ = t r  (M, M ,  MY) = t r  (MY M, ME) = t r  (M,  M Y  M , ) .  (3) 

The permutational arrangement of the group products M, MY MZ, My Mz Mx, and Mz M, MY of o+ (3) 
corresponding to the trace 3- corresponds to a cyclic permutation of letters. Similarly the cyclic 
arrangement M, MI MY My M, Mz and M E  My M, corresponds to the trace 3+.  The array of cyclic 
permutations corresponding to 3,  may be achieved by an initial inversion of two letters from the 
array corresponding to +-. 

FIRST PROPOSITION 

The trace functions q- and $+ aye each invariant with respect to a choice of a right o r  left 
handed coordinate system. 

Consider the diagram where the primed angle refers to a 

8,' 
left handed system, and where e,' = -e3,  e,' = -e,, and e,' = e,. 

8,: CJ; 

- Y  myWith respect to $-, consider the term - sine, s ine2sine3 . 
= Y 93 	 By substituting the left handed angle elements into this term, 

it is readily seen that 
X 

-sine, s i n e2 s i ne3 =-s ine '1 sine'2 sine;. 

Similarly, with respect to $+, substituting the left handed angle elements into the term 
+ sine1 sin 8, sin 8, shows that 

+s in@,sine, sine, =s ine ;  sine; sine:. 
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Thus the choice of the sign preceding the term sin e, s in  e, s in  8, (the sign which distinguishes 3­
from $+) is independent of a choice of a right o r  left-handed coordinate system. Q.E.D. 

SECOND PROPOSITION 

B y  changing at least one angle, or at most three diflerent angle elements @ut not two) &om a 
positive to a negative sense, the trace Bnction 4- will be altered to become $,, or the &ace ficnction 
4,  can be mapped onto $-, 

When B i  = *2k7~, i = 1, 2, 3 where k = 0, a positive integer, o r  a positive rational fraction, 
then $- = $+ for at least one of the angles of rotation. This case is equivalent to the condition that 
at least one of the rotation matrices of the set { M,, My,M, } corresponds to the identity matrix I , .  

By definition, a rotation of 180" represents a reflection and corresponds to k = k( 2n + 1)/2 where 
n = 0 o r  a positive integer: o r  k = kq/2 where q = 0 mod 1, q = 0 o r  a positive integer. 

Consider the trace function $- (Relation 2): 

Case I: If e, is replaced by -e1, 0 ,  by -e,, and e ,  by -8, ,then $- = $+ . 

Case ZZ: If 8, is replaced by-e, and e, by -e2 ,  or  if e l  is replaced by-e, and e, by -e3, o r  
if e, is replaced by -e, and e, by -e, ,then $- = $- . 

Case ZZZ: If e, is replaced by -e, , o r  if e, is replaced by -e2, o r  if e, is replaced by -e3, 
then $- = $+. 

Thus, it is seen that two cases arise, where i is the number of angle element changes which 
a r e  altered in sense; they a r e  cases I and III, and a r e  expressed by the relation i + 0 mod 2. This 
means that if  one angle is replaced by its negative, or  i f  all 3 angles are  replaced by their nega­
tives, then $- -$+ or $+-3- . Case I1 is expressed by the relation i = 0 mod 2. This means that 
if two angles a r e  replaced by their negatives, then $- -$- and $+-$+ .Q.E.D. 

CONSTRUCTION OF 3-DIMENSIONAL EIGENDYADICS CORRESPONDING 
TO ELEMENTS OF THE SYMMETRIC GROUPA3 

The two sets of proper rotation matrices 

{ M, M Y  M,, M YM, M,, M, M xM y  } - A 3  -4- A2 t 4-A - 1 = 0 (4) 

and 

{ M YM xM,, M, M, My, M, M yM x  } - A3 - $'+-A2 t 3, A - 1 = 0  (5) 
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where 

a r e  the characteristic equations of the matrices to which they correspond. The constant term of 
the characteristic equation is the determinant of the product of the rotation matrices. It is there­
fore +1 in value because of the unimodularity of the group elements of o+ (3), and so the constant 
term and its sign is (-1)3 - 1. The eigenvalues of these proper rotation operators, which a re  the 
roots of the characteristic equations (Relations 4 and 5 )  may be arranged as follows. 

Corresponding to +-: 

And corresponding to ++: 

It is easy to calculate that x' = ($* - 1)/2 and y'  = (3  + 2,b* -+:)1'2/29 and that the eigenvalues lie 
on the unit circle in the complex plane. For conciseness of notation, let c0s-l (4- - 1)/2 = a and 
c 0 s - l  ($+- 1)/2 = p. The eigenvalues may now be represented as 

x ; = 1 ,  A : = ] .  , 

It may be of interest here to note that the trace functions 4- and $+ may also be expressed as 
$- = 1 +cia + e-ia = 1 + 2 c o s  a; and$+ = l + e i p + e - i p  = 1 + 2 c o s  p .  

The two inequivalent Sets of matrices {M, MYM, MY MzMx, M, M, MY} and {MY Mx MI, Mx M, My, M, My M,} 
have been shown to be convertible to each other by changing the sense of an odd number of angles 
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for all the elements of any one set. And this will have the effect of initially permuting two of the 
elements of any one of the matrix products contained in one of the sets of matrices, and then 
cyclically permuting the new order arrangement. In this manner, the order of the factors of any 
product of one set can be made identical to the order of a corresponding product of matrices in the 
other set. Thus, an equivalence has been effected by this conversion transformation. These trans­
formations may otherwise be expressed as 

Thus the eigenvalues e f i a  and e * i P  are indistinguishable with respect to such a transformation, and 
since eiia = e * @  =>a = p, there is no theoretical distinction between these two sets of eigenvalues. 

Because of the commutativity of the linear factors of the characteristic polynomial, which will 
now be written as A 3  - + A 2  +$A - 1, it is immaterial which index, 1, 2, o r  3, actually designates which 
root expression. In addition, the existence of 6 different choices for the order positioning of the 
eigenvalues is also evident. These order arrangements can be considered as diagonal elements of 
a dyadic in nonion form, and can be expressed as: 

iT1 = ii + e i a  jj t e m i ak k  , 

i T ( 1 3 2 )  = e - i a  ii t jj t e i a  kk I 

2T
(12 )  

- . i a- ii t jj + e - i a  kk , 

where the superscript preceding the tensor symbol is the order of the tensor (in this case 2), the 
subscript preceding the tensor symbol is the dimension of the space, and the subscript following 
the tensor symbol represents the particular order arrangement of the dyadic components by re­
ferring to the permutation element of the symmetric group on 3 letters, d,. The alternating group 

6, (1, (123),(132);.} is the normal subgroup of h3, and corresponds to those tensors whose 
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components have been cyclically permuted with respect to the basis elements (the unit dyads i i ,  
jj, and kk); whereas the permutations (12), (23), and (13), correspond to those tensors whose 
components have been cyclically permut;ed after an initial inversion of the dyadic corresponding 
to the arrangement chosen to correspond to the identity permutation. 

Choose the set of three dyadics which, by virtue of the cyclical permutation of their compo­
nents with respect to their bases dyad elements ii, jj, and k k ,  correspond to the elements 1,(123), 
and (132) of the alternating group a,. This choice is accomplished by making an initial choice 
from one of the 3! possible arrangements and calling it the identity. These dyadics have 
been established as iT1 , i T ( , , , ) ,  and JZT(,,,) . Or, if  it is wished, choose that set of three dyadics 
which was constructed upon a choice of an inversion of two of the components of the dyadic cor­
responding to the identity permutation, and whose components were then twice cyclically permuted, 
32T( 1 2 )  9 i T ( 2 3 )  9 and iT(1 3 )  

Consider the set of dyadics { i T ( , , )  , ;T( , , ) ,  i T ( 1 3 ) } .  If the angle elements a and -a of their 
components e i a  and e-ia are exchanged, which is in effect a replacement of them by substitution, 
the following transformation up occurs: 

The choice of order of the components 1, e i a ,  and e-ia, with respect to the unit dyads i i ,  jj, 
and kk,  which form the 3 dyadics corresponding to the permutations 1, (123), and (132), is im­
material. It is possible to choose any one of the three dyadics iT1 , i T ( 1 2 3 ) ,  and ;T(,,,) to repre­
sent a unique set  of basis elements for an eigendyadic. 
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